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Abstract—Deep convolutional neural networks (DCNN’s) have 

shown great value in approaching highly challenging problems in 

image classification. Based on the successes of DCNNs in scene 

classification and object detection and localization it is natural to 

consider whether they would be effective for much simpler 

computer vision tasks. 

Our work involves the application of a DCNN to the relatively 

simple task of detecting weeds in lawn grass.  We looked at the 

effects of the choice of CNN hyper-parameters on accuracy and 

training convergence behavior. In order to obtain a large labeled 

set of interesting data we generated realistic synthetic imagery. 

Since our problem is somewhat constrained we were able to run 

thousands of training experiments and do accurate estimation of 

the probability density function of the convergence rate. 

Our results suggest that the use of realistic synthetic imagery 

is an effective approach for training DCNNs, and that very small 

DCNNs can be effective for simple image recognition tasks.  

Keywords—convolutional, DCNN, deep learning, computer 

vision 

I. INTRODUCTION 

The problem of controlling undesired plant species while 
promoting the development of desired crop plants dates back to 
the dawn of agriculture. Modern weed control generally relies 
on the indiscriminate application of chemical herbicides. This 
approach is expensive – it is estimated that billions of dollars are 
spent annually in the US on herbicides for commercial farming. 
Beyond the financial costs there are serious concerns about the 
impact of chemical herbicides on human and animal health as 
well, as on the health of desired crop species. Furthermore it 
appears that the repeated use of herbicides in an area actually 
gives rise to the emergence of herbicide-resistant weeds, which 
tends to negate the beneficial effects of the chemicals [1]. 

The challenge is well known to many homeowners, who 
struggle with control of weeds in lawns (see Figure 1) while 
balancing concerns over health risks to children and pets, and 
contamination of groundwater.  There have been proposals to 
address this problem based on robotic weeding devices using 
computer vision, but an effective commercial solution has yet to 
be demonstrated. 

A number of studies focusing on detecting weeds in lawns 
have been carried out based on the use of hand-crafted features, 
such as difference moments [2], Gabor wavelets [3], moments 
of enhanced images [4], combined morphological filters and 
moments [5] and local binary patterns [6].  The features were 
classified based on heuristic functions [2][3][4][5], Three-Layer 
Perceptron [3], Bayes analysis [4] or Support Vector Machine 
[6].  A study was conducted using a Deep Convolutional Neural 
Network, but was limited to isolated laboratory obtained leaf 
images [7]. 

 

Figure 1: Example of Weeds in Home Lawn 

Deep convolutional neural networks (DCNN’s) have shown 
great value in approaching highly challenging problems in 
image classification. Based on the successes of DCNNs in scene 
classification and object detection and localization it is natural 
to consider whether they would be effective for much simpler 
computer vision tasks. 

Our work involves the application of a DCNN to the 
relatively simple task of detecting weeds in lawn grass.  We 
looked at the effects of the choice of CNN hyper-parameters on 
accuracy and training convergence behavior. In order to obtain 
a large labeled set of interesting data we generated realistic 
synthetic imagery. Since our problem is somewhat constrained 
we were able to run thousands of training experiments and do 
accurate estimation of the probability density function of the 
convergence rate. 

We based our DCNN on AlexNet, which achieved notoriety 
for its outstanding performance in the 2012 Imagenet Large 
Scale Visual Recognition Challenge[8].  We trained our network 
with synthetic images, which were generated in an attempt to 
realistically model natural images.  We started with a relatively 



large network (many convolutional features) and progressively 
pared down the network size until its ability to model the 
training set was impaired. 

II. METHODOLOGY 

1. Classification Framework 
We set out to select among two hypotheses: 

Hypothesis H0: image contains no weeds 

Hypothesis H1: image contains weeds 

We used a DCNN with two outputs, with one output 
representing the estimated probability of H0 and the other H1.  
The output with the higher level resulted in deciding for the 
associated hypothesis. 

2. DCNN 
We used the Berkeley Caffe tools [9] to train and test a 

DCNN modeled after AlexNet [8].  Similar to AlexNet our 
DCNN had five convolutional layers and three fully connected 
layers.  Our input images were 256 x 256 pixels, and we used 
similar max-pooling and stride-based downsampling in the 
convolutional layers.  We employed the rectified linear non-
linearity, dropout training and cross-entropy loss function.  

The key differences between our network and AlexNet were 
that we used grayscale input images, we decided among only 
two classes and we used far fewer features in our convolutional 
and fully connected layers.  A comparison in DCNN 
hyperparameters between our network and AlexNet is given in 
Table 1. 

Table 1: DCNN Hyperparameters – Comparison Against AlexNet 

Layer 
1 

CNV 
2 

CNV 
3 

CNV 
4 

CNV 
5 

CNV 
6 

FC 
7 

FC 

AlexNet 96 256 384 384 256 4096 4096 

Present Study 4-64, all identical 4-128 16-128 

 

3. Synthetic Data 
We generated a set of 9,000 synthetic images.  Software was 

developed to produce realistically complex occlusions and 
variations in leaf number, size, color and orientation in images 
simulating grass (representative of H0) and grass plus weeds 
(representative of H1), as shown in Figure 2.  Two LMDB 
databases were created for use with Caffe; one with 8,000 
images for training and the other with 1,000 images for testing.  
In each of these two databases, half of the images were 
representative of H0 and the other half were representative of 
H1.  The order of the images in the database used for training 
were scrambled.  Mean files were computed and stored. 

4. DCNN Training 
The entire training database of 8000 synthetic images was 

used in each training epoch.  Training consisted of application 
of 100 epochs, for a total of 800,000 image-based gradient 
updates.  Testing was performed at the end of each epoch. 

Prior to training the DCNN weights were initialized 
randomly, according to the Caffe ‘xavier’ rule, which was 
derived based on [10].  Many training runs were attempted for 

each network architecture explored, each with a different seed 
used for generating random weights. 

5. Naturally Captured Images 
We captured video while scanning a lawn containing a 

variety of weeds and grasses, using an iPhone 6 Plus mounted 
on a robotic rover.  The video was decoded and converted into a 
sequence of RGB images, and the individual images were 
manually classified into two groups: 

Group 1: Grass only 

Group 2: Grass and weeds, or weeds only 

Among thousands of RGB images captured we selected a set 
of 100 images, 50 representing Group 1, and 50 representing 
Group 2.   

We applied these 100 images to several DCNNs trained 
using synthetic data only; networks were selected among those 
which achieved 100% test accuracy using synthetic data. 

 

 

 

Figure 3: Robotic Rover Used to Capture Video for Testing 

 

Figure 2: Examples of Synthetic Images 

Top Row: contains no weeds, Bottom Row: contains weeds 



III. RESULTS 

1. Synthetic Data 
Results based on training and testing with purely synthetic 

data are given in Table 3.  For each set of DCNN 
hyperparameters we ran hundreds or thousands of independent 
training operations.  Each training run used a different pseudo-
random initialization of weights.   

For the particular case of hyperparameters listed in Table 2 
we ran 16,000 independent training operations and we found a 
large spread of convergence behaviors, as illustrated in Figure 
5.   

Table 2: Hyperparameters For High Volume Training Experiments 

Convolutional layers 1-5 4 features 

Fully connected layer 6 4 neurons 

Fully connected layer 7 16 neurons 

 

We estimated probability density function (PDF) of the 
random variable 𝑇_55_75, which we define as the number of 
epochs between the first time that a test accuracy of 55% is 
achieved, until the first time that a test accuracy of 75% is 
achieved. 

The normalized histogram of 𝑇_55_75 is shown in the blue 
trace, in Figure 4.  The shape of the PDF clearly resembles a 
Gamma distribution.  For comparison, we plotted in red, the 
equation 

𝑦 =
1

480
(𝑥 + 2)2 𝑒− 

𝑥+2
6  

 

We were able to obtain 100% accuracy on our test set of 
1000 images using as few as 4 features per convolutional layer. 
Each training run involved application of 100 epochs of data, 
with each epoch consisting of 8000 images.  It took hundreds of 
such training runs to produce one network with 100% accuracy 
on test data.  As can be gleaned from Table 3, the probability of 
attaining 100% test accuracy increased as the number of features 
was increased. 

A Linux workstation was used for network training, and 
roughly 100% of one core was consumed by the Caffe 
application.  The workstation was based on Intel Xeon E5-2620 
v3 @ 2.40GHz, 32 GB RAM, 2 CPUs, 12 cores total, RHEL 6 
OS.  The amount of time to complete 100 training epochs varied 
from 55 minutes for the smallest network to 11 hours for larger 
networks.  The rightmost column in Table 3 represents the 
average time to attain 100% accuracy on test data, based on the 
fraction of runs that achieved 100% test accuracy and the time 
to complete one run.  Of the network architectures tested, the 
most efficient configuration, from the standpoint of time to 
attain 100% test accuracy, had 16 features per convolutional 
layer and 128 neurons in fully connected layers 6 and 7.  This 
architecture required an average of 4.29 hours to achieve 100% 
accuracy on test data.  

Figure 5: Plot of Accuracy vs. Training Iteration (overlaid 

results from 16,000 independent runs) 

Figure 6: Natural Imagery Used For Testing 

Left - correct H0, Center - Correct H1, Right - H1 misclassified  H0\ 

Figure 4: Time Difference From 55% to 75% Test Accuracy 



Table 3: Summary of Results of DCNN Training 

Convo. 

Layers 

# 

Features 

Fully 

Connected 

6 

# Features 

Fully 

Connected 

7 

# Features 

Percentage Achieving 

Test Accuracy Level 

Time to 

Process 

8000 

Batches 

(800K 

images) 

Average 

Time to 

Attain 

100% 

Accuracy 

(hours) 

>=90 >=99 100 

4 4 16 30.1 8.3 0 - - 

4 4 256 35 10 0 - - 

4 8 256 56 33.3 0.629 0:55 145.73 

4 16 256 83 61 0 - - 

4 128 128 80 56 0 - - 

  
 

  

8 8 64 41.6 35.6 2.2 1:31   

8 16 256 71.8 56.8 2.54 1:26 56.43 

8 128 128 99 94 14 1:45 12.50 

  
 

  

16 16 16 80 79 13 2:17 17.56 

16 32 32 99 99 42 2:16 5.40 

16 128 128 100 100 54 2:19 4.29 

  
 

  

32 128 128 100 100 74 4:42 6.35 

  
 

  

64 128 128 100 100 82 11:04 13.50 

 

2. Naturally Captured Images 
We found a correct classification rate of 95% (5% error) over 

the set of hand selected natural images.  All five of the errors 
involved misclassifying images that actually represented H1 as 
representing H0.  Figure 6 shows three of the natural images 
used for testing.  The left-most image was correctly classified as 
representing H0.  The center image was correctly classified as 
representing H1. The right-most image was incorrectly 
classified as representing H0. 

IV. CONCLUSIONS 

It appears that DCNNs can be a viable tool for practical 
applications of computer vision. We found that even very small 
DCNNs can handle multiple occlusions robustly and provide 
high accuracy image classification.  Most notably we found that 
it is feasible and advantageous to train a DCNN using solely 
synthetic labeled data, even when the ultimate goal is to classify 
natural images.  We studied the training behavior of DCNNs 

intensively, and found that the convergence time PDF resembles 
a Gamma distribution. 
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