
978-1-5090-3284-6/16/$31.00 ©2016 IEEE

Convolutional Neural Network Application to

Plant Detection, Based on Synthetic Imagery

Larry Pearlstein

Mun Kim

Warren Seto

Department of Electrical and Computer Engineering

The College of New Jersey

Ewing, NJ USA

e-mail: pearlstl@tcnj.edu

Abstract—Deep convolutional neural networks (DCNN’s) have

shown great value in approaching highly challenging problems in

image classification. Based on the successes of DCNNs in scene

classification and object detection and localization it is natural to

consider whether they would be effective for much simpler

computer vision tasks.

Our work involves the application of a DCNN to the relatively

simple task of detecting weeds in lawn grass. We looked at the

effects of the choice of CNN hyper-parameters on accuracy and

training convergence behavior. In order to obtain a large labeled

set of interesting data we generated realistic synthetic imagery.

Since our problem is somewhat constrained we were able to run

thousands of training experiments and do accurate estimation of

the probability density function of the convergence rate.

Our results suggest that the use of realistic synthetic imagery

is an effective approach for training DCNNs, and that very small

DCNNs can be effective for simple image recognition tasks.

Keywords—convolutional, DCNN, deep learning, computer

vision

I. INTRODUCTION

The problem of controlling undesired plant species while
promoting the development of desired crop plants dates back to
the dawn of agriculture. Modern weed control generally relies
on the indiscriminate application of chemical herbicides. This
approach is expensive – it is estimated that billions of dollars are
spent annually in the US on herbicides for commercial farming.
Beyond the financial costs there are serious concerns about the
impact of chemical herbicides on human and animal health as
well, as on the health of desired crop species. Furthermore it
appears that the repeated use of herbicides in an area actually
gives rise to the emergence of herbicide-resistant weeds, which
tends to negate the beneficial effects of the chemicals [1].

The challenge is well known to many homeowners, who
struggle with control of weeds in lawns (see Figure 1) while
balancing concerns over health risks to children and pets, and
contamination of groundwater. There have been proposals to
address this problem based on robotic weeding devices using
computer vision, but an effective commercial solution has yet to
be demonstrated.

A number of studies focusing on detecting weeds in lawns
have been carried out based on the use of hand-crafted features,
such as difference moments [2], Gabor wavelets [3], moments
of enhanced images [4], combined morphological filters and
moments [5] and local binary patterns [6]. The features were
classified based on heuristic functions [2][3][4][5], Three-Layer
Perceptron [3], Bayes analysis [4] or Support Vector Machine
[6]. A study was conducted using a Deep Convolutional Neural
Network, but was limited to isolated laboratory obtained leaf
images [7].

Figure 1: Example of Weeds in Home Lawn

Deep convolutional neural networks (DCNN’s) have shown
great value in approaching highly challenging problems in
image classification. Based on the successes of DCNNs in scene
classification and object detection and localization it is natural
to consider whether they would be effective for much simpler
computer vision tasks.

Our work involves the application of a DCNN to the
relatively simple task of detecting weeds in lawn grass. We
looked at the effects of the choice of CNN hyper-parameters on
accuracy and training convergence behavior. In order to obtain
a large labeled set of interesting data we generated realistic
synthetic imagery. Since our problem is somewhat constrained
we were able to run thousands of training experiments and do
accurate estimation of the probability density function of the
convergence rate.

We based our DCNN on AlexNet, which achieved notoriety
for its outstanding performance in the 2012 Imagenet Large
Scale Visual Recognition Challenge[8]. We trained our network
with synthetic images, which were generated in an attempt to
realistically model natural images. We started with a relatively

large network (many convolutional features) and progressively
pared down the network size until its ability to model the
training set was impaired.

II. METHODOLOGY

1. Classification Framework
We set out to select among two hypotheses:

Hypothesis H0: image contains no weeds

Hypothesis H1: image contains weeds

We used a DCNN with two outputs, with one output
representing the estimated probability of H0 and the other H1.
The output with the higher level resulted in deciding for the
associated hypothesis.

2. DCNN
We used the Berkeley Caffe tools [9] to train and test a

DCNN modeled after AlexNet [8]. Similar to AlexNet our
DCNN had five convolutional layers and three fully connected
layers. Our input images were 256 x 256 pixels, and we used
similar max-pooling and stride-based downsampling in the
convolutional layers. We employed the rectified linear non-
linearity, dropout training and cross-entropy loss function.

The key differences between our network and AlexNet were
that we used grayscale input images, we decided among only
two classes and we used far fewer features in our convolutional
and fully connected layers. A comparison in DCNN
hyperparameters between our network and AlexNet is given in
Table 1.

Table 1: DCNN Hyperparameters – Comparison Against AlexNet

Layer
1

CNV
2

CNV
3

CNV
4

CNV
5

CNV
6

FC
7

FC

AlexNet 96 256 384 384 256 4096 4096

Present Study 4-64, all identical 4-128 16-128

3. Synthetic Data
We generated a set of 9,000 synthetic images. Software was

developed to produce realistically complex occlusions and
variations in leaf number, size, color and orientation in images
simulating grass (representative of H0) and grass plus weeds
(representative of H1), as shown in Figure 2. Two LMDB
databases were created for use with Caffe; one with 8,000
images for training and the other with 1,000 images for testing.
In each of these two databases, half of the images were
representative of H0 and the other half were representative of
H1. The order of the images in the database used for training
were scrambled. Mean files were computed and stored.

4. DCNN Training
The entire training database of 8000 synthetic images was

used in each training epoch. Training consisted of application
of 100 epochs, for a total of 800,000 image-based gradient
updates. Testing was performed at the end of each epoch.

Prior to training the DCNN weights were initialized
randomly, according to the Caffe ‘xavier’ rule, which was
derived based on [10]. Many training runs were attempted for

each network architecture explored, each with a different seed
used for generating random weights.

5. Naturally Captured Images
We captured video while scanning a lawn containing a

variety of weeds and grasses, using an iPhone 6 Plus mounted
on a robotic rover. The video was decoded and converted into a
sequence of RGB images, and the individual images were
manually classified into two groups:

Group 1: Grass only

Group 2: Grass and weeds, or weeds only

Among thousands of RGB images captured we selected a set
of 100 images, 50 representing Group 1, and 50 representing
Group 2.

We applied these 100 images to several DCNNs trained
using synthetic data only; networks were selected among those
which achieved 100% test accuracy using synthetic data.

Figure 3: Robotic Rover Used to Capture Video for Testing

Figure 2: Examples of Synthetic Images

Top Row: contains no weeds, Bottom Row: contains weeds

III. RESULTS

1. Synthetic Data
Results based on training and testing with purely synthetic

data are given in Table 3. For each set of DCNN
hyperparameters we ran hundreds or thousands of independent
training operations. Each training run used a different pseudo-
random initialization of weights.

For the particular case of hyperparameters listed in Table 2
we ran 16,000 independent training operations and we found a
large spread of convergence behaviors, as illustrated in Figure
5.

Table 2: Hyperparameters For High Volume Training Experiments

Convolutional layers 1-5 4 features

Fully connected layer 6 4 neurons

Fully connected layer 7 16 neurons

We estimated probability density function (PDF) of the
random variable 𝑇_55_75, which we define as the number of
epochs between the first time that a test accuracy of 55% is
achieved, until the first time that a test accuracy of 75% is
achieved.

The normalized histogram of 𝑇_55_75 is shown in the blue
trace, in Figure 4. The shape of the PDF clearly resembles a
Gamma distribution. For comparison, we plotted in red, the
equation

𝑦 =
1

480
(𝑥 + 2)2 𝑒−

𝑥+2
6

We were able to obtain 100% accuracy on our test set of
1000 images using as few as 4 features per convolutional layer.
Each training run involved application of 100 epochs of data,
with each epoch consisting of 8000 images. It took hundreds of
such training runs to produce one network with 100% accuracy
on test data. As can be gleaned from Table 3, the probability of
attaining 100% test accuracy increased as the number of features
was increased.

A Linux workstation was used for network training, and
roughly 100% of one core was consumed by the Caffe
application. The workstation was based on Intel Xeon E5-2620
v3 @ 2.40GHz, 32 GB RAM, 2 CPUs, 12 cores total, RHEL 6
OS. The amount of time to complete 100 training epochs varied
from 55 minutes for the smallest network to 11 hours for larger
networks. The rightmost column in Table 3 represents the
average time to attain 100% accuracy on test data, based on the
fraction of runs that achieved 100% test accuracy and the time
to complete one run. Of the network architectures tested, the
most efficient configuration, from the standpoint of time to
attain 100% test accuracy, had 16 features per convolutional
layer and 128 neurons in fully connected layers 6 and 7. This
architecture required an average of 4.29 hours to achieve 100%
accuracy on test data.

Figure 5: Plot of Accuracy vs. Training Iteration (overlaid

results from 16,000 independent runs)

Figure 6: Natural Imagery Used For Testing

Left - correct H0, Center - Correct H1, Right - H1 misclassified H0\

Figure 4: Time Difference From 55% to 75% Test Accuracy

Table 3: Summary of Results of DCNN Training

Convo.

Layers

Features

Fully

Connected

6

Features

Fully

Connected

7

Features

Percentage Achieving

Test Accuracy Level

Time to

Process

8000

Batches

(800K

images)

Average

Time to

Attain

100%

Accuracy

(hours)

>=90 >=99 100

4 4 16 30.1 8.3 0 - -

4 4 256 35 10 0 - -

4 8 256 56 33.3 0.629 0:55 145.73

4 16 256 83 61 0 - -

4 128 128 80 56 0 - -

8 8 64 41.6 35.6 2.2 1:31

8 16 256 71.8 56.8 2.54 1:26 56.43

8 128 128 99 94 14 1:45 12.50

16 16 16 80 79 13 2:17 17.56

16 32 32 99 99 42 2:16 5.40

16 128 128 100 100 54 2:19 4.29

32 128 128 100 100 74 4:42 6.35

64 128 128 100 100 82 11:04 13.50

2. Naturally Captured Images
We found a correct classification rate of 95% (5% error) over

the set of hand selected natural images. All five of the errors
involved misclassifying images that actually represented H1 as
representing H0. Figure 6 shows three of the natural images
used for testing. The left-most image was correctly classified as
representing H0. The center image was correctly classified as
representing H1. The right-most image was incorrectly
classified as representing H0.

IV. CONCLUSIONS

It appears that DCNNs can be a viable tool for practical
applications of computer vision. We found that even very small
DCNNs can handle multiple occlusions robustly and provide
high accuracy image classification. Most notably we found that
it is feasible and advantageous to train a DCNN using solely
synthetic labeled data, even when the ultimate goal is to classify
natural images. We studied the training behavior of DCNNs

intensively, and found that the convergence time PDF resembles
a Gamma distribution.

REFERENCES

[1] Young, Stephen L., and Francis J. Pierce, eds. Automation: The Future of

Weed Control in Cropping Systems. Springer, 2014.

[2] Ahmad, U., N. Kondo, S. Arima, M. Monta, and K. Mohri. "Weed
detection in lawn field using machine vision: Utilization of textural
features in segmented area." Journal of the Japanese Society of
Agricultural Machinery (Japan) (1999).

[3] Tang, Lie, L. Tian, and Brian L. Steward. "Classification of broadleaf and
grass weeds using Gabor wavelets and an artificial neural network."
Transactions of the ASAE 46, no. 4 (2003): 1247.

[4] Watchareeruetai, Ukrit, Yoshinori Takeuchi, Tetsuya Matsumoto,
Hiroaki Kudo, and Noboru Ohnishi. "Computer vision based methods for
detecting weeds in lawns." Machine Vision and Applications 17, no. 5
(2006): 287-296.

[5] Watchareeruetai, Ukrit, Yoshinori Takeuchi, Tetsuya Matsumoto,
Hiroaki Kudo, and Noboru Ohnishi. "Modified lawn weed detection:
utilization of edge-color based SVM and grass-model based blob
inspection filterbank." In International Conference on Neural Information
Processing, pp. 30-39. Springer Berlin Heidelberg, 2007.

[6] Ahmed, Faisal, ASM Hossain Bari, A. S. M. Shihavuddin, Hawlader
Abdullah Al-Mamun, and Paul Kwan. "A study on local binary pattern
for automated weed classification using template matching and support
vector machine." In Computational Intelligence and Informatics (CINTI),
2011 IEEE 12th International Symposium on, pp. 329-334. IEEE, 2011.

[7] Lee, Sue Han, Chee Seng Chan, Paul Wilkin, and Paolo Remagnino.
"Deep-Plant: Plant Identification with convolutional neural networks." In
Image Processing (ICIP), 2015 IEEE International Conference on, pp.
452-456. IEEE, 2015.

[8] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." In Advances in
neural information processing systems, pp. 1097-1105. 2012.

[9] Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. "Caffe:
Convolutional Architecture for Fast Feature Embedding." arXiv preprint
arXiv:1408.5093 (2014).

[10] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of
training deep feedforward neural networks." In Aistats, vol. 9, pp. 249-
256. 2010.

