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Abstract—One challenge in a video surveillance system is the 

data rate required to represent digital video.  Accordingly, the use 

of lossy video compression at a compression ratio of 100:1, or 

higher, is an essential part of any distributed live video system.  

The ensuing distortion can interfere with the goals of surveillance 

by confounding both human analysis and computer vision based 

processing. 

This paper investigates the interaction between the video 

coding layer and target detection, and proposes methods for 

improving overall system effectiveness.  Previous related research 

has focused on joint optimization of the video coding layer where 

several streams share the same bandwidth. 

Our work is distinguished from prior studies in several area: 

we use Gradual Decoder Refresh, rather than the traditional 

GOP, to enable low delay and similarly avoid the use of B frames, 

which necessitate frame reordering.  We extend the previous work 

by providing the ROC curves for the detection of foreground 

object motion, as a function of the quantization parameter.  We 

also consider the H.265 video coding standard, in addition to 

H.264.   

We note some surprising findings.  We show that H.265 can 

significantly underperform H.264 in terms of Area Under Curve 

vs. Bitrate, and that it is possible to produce large “false alarm” 

blobs for moving object detection, even for a stationary, relatively 

noise-free source coded at low QP. 
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I. INTRODUCTION 

A live-video database management system (LVDBMS) has 
been proposed for enhancing the effectiveness of video 
surveillance tasks [1]. Currently analysts can become 
overloaded by unimportant information.  The LVDBMS enables 
automated event detection (AED), which can be used to provide 
alerts and call-outs, and thereby draw analysts’ attention 
appropriately.  AED is based on a combination of algorithms for 
image processing and computer vision (CV). 

One challenge in a video surveillance system is the 
bandwidth required to store and transmit digital video data.  The 
raw data rate for a single stream of video is typically several 
Gbits/sec – far too high for carriage on most wireless links and 
even challenging for powerful cloud computing networks.   
Accordingly, the use of lossy video compression at a 

compression ratio of 100:1, or higher, is an essential part of any 
distributed live video system.  Although very high compression 
ratios are frequently necessitated by system constraints, their use 
can introduce significant picture distortion.  This distortion can 
interfere with system goals by confounding both human analysis 
and the CV algorithms used for AED.  It is therefore natural to 
investigate the interaction between the distortion introduced by 
lossy video compression and CV algorithms. 

A previous study focused on joint optimization of the video 
coding layer, where several streams share the same bandwidth 
[2].  That work was intimately tied to the use of the traditional 
Group of Pictures (GOP) structure within the H.264 coding 
standard, and focused on the tailoring of bitrate and forward 
error correction for the specific case of detection of human 
subjects.  Based on their framework, that work concluded that 
more bits should be allocated to streams where more humans 
had recently been detected. 

For this study, we chose to focus attention on the CV 
operation known as “foreground detection”, which can be an 
effective detector for object motion.  Foreground detection is 
generally accomplished via background modeling.  A recent 
survey paper studied a variety of methods for background 
modeling, and the Mixture of Gaussians (MOG) was identified 
as being in the group that exhibited the most robustness to 
challenging situations [5].  We chose to use the MOG approach 
for background modeling.  

One of the important options involved in performing video 
compression is determining the rate and pattern of decoder 
refresh.  Typical video compression systems employ inter-frame 
prediction, where the decoder is instructed to form a motion-
compensated prediction of the current frame from previously 
decoded frames.  Then only the difference between the current 
frame and the decoder’s prediction are actually coded and 
transmitted.  However, this iterative process requires frequent 
decoder re-initialization to enable a decoder to “enter” a running 
bitstream at a random point, and also to recover from a 
transmission error.  For entertainment applications the frequent 
re-initialization is accomplished via a “Group of Pictures” 
(GOP) structure, which always begins with a frame that is coded 
in intra-frame-only mode, i.e. without referring to any 
previously decoded frames. 

The traditional GOP structure is not compatible with low-
delay applications, such as remotely controlled unmanned aerial 



vehicles (UAVs).  The current study implements low-delay 
coding by using Gradual Decoder Refresh, rather than the 
traditional GOP, and avoids the use of B frames, which 
necessitate frame reordering.   

We extend previous work by providing the Receiver 
Operating Characteristic (ROC) curves and Area Under Curve 
(AUC) metrics, for the detection of object motion, as a function 
of the quantization parameter.  We derive AUC as a function of 
bitrate, and compare the newer H.265 video coding standard 
against the more widely deployed H.264 standard. 

We created an experimental framework for generating 
content, performing video compression and applying computer 
vision algorithms.  We ran a number of experiments – some of 
which confirmed our expectations, but others yielded surprising 
results.  Section 0 describes our methodology.  Our results are 
presented in Section II, and conclusions are given in Section 0. 

 

METHODOLOGY 

To explore the interaction between video compression and 
AED we developed an experimental framework for creating 
content, performing video compression applying computer 
vision algorithms and analyzing the results.  A flow diagram that 
represents these steps is shown in .  Each of the elements 
depicted is described in detail below. 

A. Create Foreground Sprite & Mask 

To study foreground object detection, we created a synthetic 
foreground image, and prepared it for animation by creating a 
foreground mask, as illustrated in .  The foreground image sprite 
resembled an automobile, and had a bounding rectangle of 
19Hx15V pixels, with a total of 202 active pixels under the 
mask.  The foreground image was represented by RGB values, 
with 8 bits per component. 

B. Generate Background Images 

Three different RGB images were created for use as 
backgrounds, each 1920H x 1080V pixels and 8 bits per pixel 
component: 

gray: R=G=B=128 

noise: fixed high texture pattern; R, G, B, where each is 
composed of independent Gaussian noise, mean 128, standard 
deviation of 100, saturated to the range [0,255]. 

tcnj: Aerial view of the campus of The College of New 
Jersey, obtained from Google maps satellite view, which is 
shown in . 

C. Generate Composited Animation 

Object motion was simulated by overlaying the foreground 
sprite on top of a background image, while translating the sprite 
back and forth across the background image in a sequence of 
images. 

Object-free sequences, which were used for assessing 
detector false alarm rates, were created by simply replicating a 
given background image. 

D. Add Noise 

Image sequences were generated by adding Gaussian noise, 
statistically independent both spatially and temporally, to each 
of the channels.  The noise was scaled to produce a Peak Signal 
to Noise Ratio (PSNR) of either 20 dB or 40 dB, where 

PSNR = 10 𝑙𝑜𝑔 [
2552

𝐸 {(𝑝𝑖𝑗 − 𝑝̅)
2

}
] 

Here a mean value, 𝑝̅, of 128 was used for each channel and 
the results were clipped to the range [0, 255]. 

It should be noted that a Gaussian noise PSNR of 20 dB 
would likely be judged as “fair to poor” quality by human 
viewers, whereas a PSNR of 40 dB would likely be judged as 
“excellent” quality [9]. 

Generate Background Images

Generate Spatio-Temporal Noise

Generate Composited AnimationCreate Foreground Sprite & Mask

Add Noise

Video Compress & Decompress

OpenCV Foreground Object Detection

ROC/AUC Analysis

Figure 1: Video Generation and Analysis Flow 

 



E. Video Compress & Decompress 

Video sequences were created for cases with and without an 
overlaid moving object, and were compressed using both the 
H.264 standard and the H.265 standard.  The open source 
sequence processor “avconv” was used with the ‘x264’ and 
‘x265’ CODEC libraries.  Compression parameters were as 
follows: 

Compression Attribute Value 

Source Image File Format RGB, .bmp files 

Encoded Pixel Format YUV 4:2:0 

# of Reference Frames 1 

Refresh Strategy 
GDR – vertical columns of 
intra coding blocks 

Refresh Period 15 frames 

Rate Control Method None – constant QP 

# of Bi-predictive Frames 0 

Encoded File Format .mp4, video only 

Assumed Frame Rate 30 fps 

 

F. OpenCV Foreground Object Detection 

The processing pipeline shown in Figure 2 was implemented 
in C++, via the use of OpenCV 3.0 library routines, as listed in 
Table 1. 

T

+

-

Gen 
FG 

Mask

LPF Binarize Blob Detect

 

Figure 2: Foreground Object Detection Pipeline 

 

Pipeline 

Function 

OpenCV Library Routine 

LPF blur(), 3x3 kernel size 

Gen FG 

Mask 

BackgroundSubtractorMOG2.apply() 

Binarize threshold(), threshold level = 192 

Blob connectedComponentsWithStats() 

Table 1: OpenCV Library Routines Used 

 
The ‘Blob’ process created one histogram of blob sizes per 

frame, where we define the size of a blob as the square-root of 
the number of pixels in the blob: 

𝑏𝑙𝑜𝑏_ℎ𝑖𝑠𝑡𝑜(𝑖, 𝑗) = # of blobs in frame 𝑖 of size 𝑗 

For frame 𝑖  the ‘Detect’ function decided for one of the 
following two hypotheses: 

H0: No foreground object was present in the frame 

H1: At least one foreground object was present in the frame 

based on a threshold, 𝑇, and the detection rule: 

max
𝑗  [𝑏𝑙𝑜𝑏_ℎ𝑖𝑠𝑡𝑜(𝑖, 𝑗)] 

𝐻1

≷
𝐻0

 𝑇 

G. ROC/AUC Analysis 

The Receiver Operating Characteristic (ROC) is a plot of the 
rate of the rate of correct detection (deciding for H1 when the 
true state of nature is H1) vs. the rate of false alarm (deciding for 
H1 when the true state of nature is H0).  The rates are normalized 
relative to unity, so take on values in the range [0.0, 1.0].  On an 
ROC plot the straight line through the origin with a slope of 
unity represents the trivial detector that decides via a biased coin 
flip. 

We realized the state of nature, 𝜃 = H0, by simply repeating 
the background image, adding noise and compressing.  We 
realized the state of nature, 𝜃 = H1 , by compositing the 
foreground sprite atop the background, as described above, then 
adding noise and compressing.  Based on varying a threshold, T, 
we obtained a set of operating points (correct detection vs. false 
alarm), and a piecewise linear curve was fit between the 
operating points to estimate the ROC. 

The Area Under the Curve (AUC) metric refers to the area 
under the ROC curve, and ranges from 0.5 (for the trivial 
detector) to 1.0 (for the perfect detector). 

II. RESULTS 

A. Scenarios Investigated 

We investigated the impact of video compression on 
foreground object detection across a range of background 
textures, additive noise PSNRs, and QP values, for each of 
H.264 and H.265 compression.  The full Cartesian product of 
parameter value ranges given in was explored.  For each of the 
300 cases studied, 2000 frames were encoded and decoded.  The 
first 1000 frames were used to initialize the background model, 
and the ROC curves were obtained by analyzing the behavior on 
the last 1000 frames.  

Parameter # of 

Cases 

Range 

Synthetic 

Background 

Texture 

3 { gray, noise, tcnj } 

PSNR after 

adding noisee 

2 { 20 dB, 40 dB } 

QP values 25 { 20, 33, … 44 } 

Compression 

Standard 

2 { H.264, H.265 } 

TOTAL 300 3 x 2 x 25 x 2 = 300 scenarios 

Table 2: Ranges of Parameter Used For Investigation 

B. Connected Component Blobs 

It is instructive to examine the behavior of the system when 
there is no object overlaid on the background.  In that scenario, 
we are simply compressing a still sequence with no object 
motion – the only variations in the source pictures are due to the 



additive noise, either a small amount (i.e. PSNR = 40 dB), or a 
large amount (i.e. PSNR = 20 dB). 

1. Example 
If there were no noise, the source sequence would be a 

perfectly static image.  With a perfectly constant QP value we 
would expect zero frame-to-frame variations in the decoded 

pictures, and hence zero foreground blobs detected.  Even a 
small amount of added noise, however, gives rise to the 
detection of spurious (false) foreground blobs, as shown in 
Figure 4.  We found it somewhat surprising that large spurious 
blobs could be generated for this case of very low noise coded 
at a relatively fine quantization, at QP=34. 

2. Blob Size Histograms 
For illustration, blob size histograms for the ‘tcnj’ 

background with a PSNR of 40 dB are shown in Figure 3.  The 
top row represents the situation where there is no foreground 
object present, and the bottom row represents the case of a single 
moving foreground object. 

When the value of QP is low (left column) there is very little 
quantization noise introduced by video compression, and hence 
a relatively low rate of large spurious blobs detected.  In the 
bottom left trace the line of detected blob sizes due to the target 
are easily distinguished from the much smaller blobs due to 
spurious detection. 

When the value of QP is high there are many fairly large 
spurious blobs for this case, even though the source noise level 
is so low as to be almost imperceptible.  Looking at the rightmost 
column the initial transient due to model initialization can be 
seen, lasting approximately 1000 frames.   

3. Maximum Blob Sizes 

It can be instructive to plot the maximum blob size per frame.  

This is illustrated in Figure 5, for the case of the noise pattern 

background, with PSNR of 40 dB.  The red trace represents 

frames that actually had a foreground object, and the blue trace 

represents false blobs, obtained from frames with no 

foreground object.  It is readily observed that there is no way to 

perfectly distinguish these cases for QP > 34. 

C. ROC Results 

An example of the ROC curves for the case of H.265 
compression applied to the noise pattern background sequence 
with 40dB PSNR is shown in Figure 6.  It is apparent that there 
is no ability to detect the given object on the high texture 
background when the value of QP is greater than, or equal to, 
38. 

Figure 4: Spurious Blob (No Foreground Object Present) 

H.265 , PSNR=40 dB, Gray Background, QP=34 

 

Figure 3: Blob Size Histograms for H.264 Compression, TCNJ Background, PSNR=40dB  

Top Row – no foreground object present, Bottom Row – one foreground object present 

 



Even for the case where QP=34 we see that perfect detection 
is not achieved.  For example, we observed a minimum false-
alarm rate of about 0.1, with no missed object detection.  To put 
this into perspective, such a detector would issue false alarms at 
a rate of about 3 per second, for a frame rate of 30 fps.  Clearly, 
such a system would be useless at relieving a human analyst 
from constant monitoring.  A useful system might aim for a false 
alarm rate of one per 15 minutes, which would translate to 
approximately 3.7 parts per million – far too low to be accurately 
measured by our study of 1000 frames. 

D. AUC Results 

The AUCs for H.264 compression are plotted in Figure 7, 
and for H.265 compression in Figure 8.  Given our relatively 
limited sample size, it is not surprising to find areas of 1.0 for 
relatively low values of QP.  Given the relatively limited sample 
size considered (1000 frames) a practical system designer might 
reasonably aim for an AUC of 1.0.  We see that, for both H.264 
and H.265, an AUC of 1.0 was achieved as long as QP ≤ 32. 

It would seem reasonable to expect that the AUC would 
decrease monotonically as QP increases, but that did not always 
occur.  For the case of the ‘gray’ background at PSNR=20 dB, 
we observed a pronounced “valley of death”, with the deepest 
pit at QP=40.  This is due to the side-effect that video 
compression with extreme quantization tends to produce a noise 
reduction effect, by squashing high frequency DCT coefficients.  
At sufficiently high levels of quantization the decoded pictures 
tend to revert to a strongly lowpass filtered mean, and therefore 
exhibit very low temporal activity. 

A plot of AUC vs. bitrate, which represents all of the cases 
examined, is shown in Figure 9.  The case of the “noise” 
background with PSNR=20 dB fared the worst, as would be 
expected, based on the fact that it has the highest spatial and 
temporal entropy.   

Perhaps the most striking result obtained is the large chasm 
between the performance of H.264 and H.265 on the “gray” 
background with PSNR=20 dB (dark red solid vs. dark red 
dashed).  Here we found an enormous advantage for H.264.  Not 
surprisingly H.264, with fewer coding options than H.265, does 
better when there is no temporal structure to the signal.  This 
would be expected as the added modeling options cause the 
encoder to waste bits on symbols that indicate prediction modes.  
The impact is somewhat mitigated by the fact that H.265 
employs context-adaptive arithmetic coding, which takes 
advantage of the degenerate nature of the prediction mode 
symbols. 

An additional cause for the poor performance of H.265 in 
this case can be traced to the fact that, for a range of QP values, 
H.265 also produced worse AUC than H.264, sometimes 
significantly so.  We observed that, for the “gray” background, 
the H.265 encoder produced far more pronounced artifacts due 
to directional prediction, than the H.264 encoder.  Recall that the 
source image was simply flat gray, with additive noise.  The 
H.265 encoder frequently found spurious structure in the noisy 
source in coding-tree units (CTUs) where intra-prediction was 
enforced for periodic refresh.  This resulted in significant 
spurious detection of structured objects when those CTUs were 
subsequently coded without the intra-prediction constraint. 

III. CONCLUSIONS 

We studied the impact of video compression on the detection 
of foreground objects, via mixture-of-Gaussians background 
modeling.  We found that there can be significant degradation of 
the computer vision algorithm due to the periodically-time 
varying nature of the distortion introduced by compression.  As 
the quantizer step-size increases the detection performance 
generally decreases, but it can recover at very high QP values, 
due to the noise reduction effect that accompanies extremely 
high compression ratios. 

We found some surprising results.  We observed cases where 
spurious object detections can be caused even when there is 
almost imperceptible noise in the source sequence, even when 
coding at relatively low values of QP.  This occurs because the 
background modeler “learns” that there is very low noise in the 
background, and sees the relatively infrequent additional 
distortion introduced by intra refresh as object motion.  We also 
observed that  H.265 can be far inferior to H.264 for sources 
with high temporal noise. 

In general, we recommend the use of advanced motion-
compensated noise reduction (MCNR) for surveillance systems 
where sensors produce a significant level of temporal noise.  
Many algorithms exist for MCNR – an early formulation was 
described in [10].  Although we found that object detection can 
be significantly impacted even with low source noise, the 
reduction of temporal noise would dramatically lower the bitrate 
for a given value of QP, enabling a reduction of QP, and 
consequent improvement in detection. 

Furthermore, we are in the process of investigating an 
improvement to the MOG background modeler, for better 
dealing with compression noise.  The algorithm used in this 
study is provided within OpenCV 3.0, and declares a 
background pixel based on: 

if (totalWeight < TB && dist2 < Tb*var) 

    background = true; 
 

We are investigation simple modifications to that test, such 
as: 

if (totalWeight < TB && dist2 < (Tb*var+qpstep2)) 

    background = true; 
 

where qpstep2 produces an expanded range for accepting as 
background a larger deviation. That increase in deviation would 
depend on the quantizer step size. 



Figure 5: Maximum Blob Sizes Per Frame – H.264 Compression, Noise Background, PSNR = 40dB 

 

Figure 6: ROC Curves – H.265, Noise Background, PSNR=40db 

 

Figure 7: AUC vs. QP for H.264 Compression Figure 8: AUC vs. QP for H.265 Compression 
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Figure 9: AUC vs. Bit Rate 

 


